Batch model runs evaluation aggregation Currently only supports testset data (no gt300) [Experimental]

evaluate_model_batch(
  root_dir = "C:/Users/adam/Documents",
  model_folder = "/GitHub/R_main/models/2024 models/PLS_75_25_var_dependent_preProcess",
  model_type_pattern = "pls_",
  new_eval = F,
  verbose_iter = T,
  path_evaluate_model_adjusted =
    "/GitHub/BDF/BDF-SSL/3_r_scripts/evaluate_model_adjusted.R"
)

Arguments

root_dir

Root directory to Project

model_folder

Folder containing model objects

model_type_pattern

prefix of model object names

new_eval

recalculate evaluation stats with evaluate_model_adjusted.R (orginal statistics will still be saved seperately)

verbose_iter

Print progress updates

path_evaluate_model_adjusted

Internal argument for sourcing required functions

Note

evaluate_model_adjusted source path is legacy. Change in future